

			V	'iew	ing th	e dat	ase	ets		
	PAIR	VIEW	1052098	job complete	MCF10AT_NTVec vs KD1_NegMode	MCF10AT_NT (#89883) MCF10AT_KD (#89884)	2015-03-19 16:22:46	NanoLc Neg (10374)	Shared [Stop sharing]	×
	PAIR	VIEW	1052085	job complete	MCF10AT_NTVec vs KD1_PosMode	MCF10AT_NT (#89683) MCF10AT_KD (#89684)	2015-03-19 14:10:30	nanoLC_560 (9920)	Shared [Stop sharing]	×
	PAIR	VIEW	1051960	job complete	PAIR_2015-03-18_17:24	Sham_Cutts (#115973) GSE_Cutts_ (#115883)	2015-03-18 17:24:58	nanoLC_560 (9920)		×
	PAIR	VIEW	1051941	job complete	SUM159VMP_VS_NF2c16_N egMode	SUM159_VMP (#89938) SUM159_NF2 (#89955)	2015-03-18 13:24:52	NanoLc Neg (10374)	Shared [Stop sharing]	×
•	PAIR	VIEW	1051935	job complete	SUM159VMP_VS_NF2c16_Po sMode	SUM159_VMP (#89688) SUM159_NF2 (#89689)	2015-03-18 12:07:33	nanoLC_560 (9920)	Shared [Stop sharing]	×
	PAIR	VIEW	1051415	job complete	Grubbs_urine_pos_mmchg	Grubbs_Uri (#107301) Grubbs_Uri (#107315)	2015-03-12 19:11:09	nanoLC_560 (9920)	[Stop sharing]	×
	PAIR	VIEW	1051379	job complete	Aman Set 3 Comparison	Aman_Set3_ (#115309) Aman_Set3- (#115234)	2015-03-12 13:21:25	nanoLC_560 (9920)	Shared [Stop sharing]	×
	PAIR	VIEW	1051373	job complete	Grubbs_urine_neg_mmchg	Grubbs_Uri (#107534) Grubbs_Uri (#107626)	2015-03-12 12:19:17	NanoLC5600 (10377)		×
	PAIR	VIEW	1051324	job complete	Grubbs_diet_neg_mmchg	Grubbs_Non (#108897) Grubbs_Irr (#108890)	2015-03-12 05:55:12	NanoLc Neg (10374)	Shared [Stop sharing]	×
	PAIR	47	1051271	job complete	Grubbs_diet_pos_mmchg	Grubbs_Non (#109003) Grubbs_Irr (#108990)	2015-03-11 22:05:58	nanoLC_560 (9920)	Shared [Stop sharing]	×
	PAIR	VIEV	1050983	job complete	Sera Positive Mode	McLean_Har (#114812) McLean_Har (#114794)	2015-03-09 22:30:49	nanoLC_560 (9920)		×
0	PAIR	VIEW	1047227	job complete	Grubbs_Diet_PosMode	Grubbs_Irr (#108990) Grubbs_Non (#109003)	2015-02-05 17:51:27	nanoLC_560 (9920)	Shared [Stop sharing]	×

►		boxplot		Mar 12, 2015, 6:19 AM		Folder
	0	CloudPlot-svg.svg		Mar 12, 2015, 6:52 AM	968 KB	SVG document
		CloudPlot.pdf		Mar 12, 2015, 6:52 AM	366 KB	PDF Document
		CloudPlot.png		Mar 12, 2015, 6:52 AM	99 KB	PNG image
►		EIC		Mar 12, 2015, 6:21 AM		Folder
	-	Heatmap_1051324.png		Mar 12, 2015, 6:22 AM	45 KB	PNG image
	20	Heatmap_Cor_1051324.png		Mar 12, 2015, 6:51 AM	356 KB	PNG image
	-	MDS.pdf		Mar 12, 2015, 6:51 AM	5 KB	PDF Document
		MDS.png		Mar 12, 2015, 6:51 AM	15 KB	PNG image
⊳		mummichog		Mar 12, 2015, 6:24 AM		Folder
		MVstats_ScalingPlot_1051324.pdf	f	Mar 12, 2015, 6:51 AM	105 KB	PDF Document
	-	PCA-diagnostics.pdf		Mar 12, 2015, 6:51 AM	5 KB	PDF Document
		PCA-diagnostics.png		Mar 12, 2015, 6:51 AM	5 KB	PNG image
	-	PCA-loadings-all.pdf		Mar 12, 2015, 6:51 AM	35 KB	PDF Document
	-	PCA-loadings-all.png D	ouble click	Mar 12, 2015, 6:51 AM	20 KB	PNG image
	-	PCA.pdf O	n this file	Mar 12, 2015, 6:51 AM	5 KB	PDF Document
		PCA.png		Mar 12, 2015, 6:51 AM	18 KB	PNG image
		result.tsv		Mar 12, 2015, 6:52 AM	1.4 MB	Plain Text
	-	rtcor.pdf		Mar 12, 2015, 6:17 AM	61 KB	PDF Document
		rtcor.png		Mar 12, 2015, 6:17 AM	40 KB	PNG image
		TICs_rtcor.pdf		Mar 12, 2015, 6:17 AM	70 KB	PDF Document
		TICs_rtcor.png		Mar 12, 2015, 6:17 AM	63 KB	PNG image
		TICs.pdf		Mar 12, 2015, 6:13 AM	71 KB	PDF Document
		TICs.png		Mar 12, 2015, 6:13 AM	62 KB	PNG image
		XCMS:annotated.diffreiatedDiet_	NegMode.tsv	Mar 12, 2015, 6:52 AM	1.5 MB	Plain Text
		XCMS.diffreportGrubiatedDiet_N	NegMode.tsv	Mar 12, 2015, 6:21 AM	1.5 MB	Plain Text
	X	CMS.diffreportGrubatedDiet_N	egMode.xlsx	Mar 12, 2015, 6:22 AM	1.2 MB	Micros(.xlsx)
		XCMSOnline_log.txt		Mar 12, 2015, 6:52 AM	2 KB	Plain Text

The Excel DiffReport from XCMS

N	м	L	К	J	1	н	G	F	E	D	С	В	A
rtmax	rtmin	rtmed	mzmax	mzmin	mzmed	updown	qvalue	pvalue	tstat	log2fold	fold	name	
3955 17.9438	17.8955	17.9395	499.721	499.7144	499.7199	DOWN	0.000591	4.25E-07	-69.9353	-1.66775	3.177186	M500T18_:	4
2393 14.66083	14.62393	14.64618	251.0067	251.0023	251.0044	UP	0.000591	7.07E-07	57.295	1.34375	2.538102	M251T15	
2967 17.8865	17.82967	17.85967	417.2133	417.2091	417.2121	UP	0.000651	1.17E-06	55.09394	1.297302	2.457688	M417T18	
7583 19.0271	18.97583	18.99725	199.1345	199.1321	199.1334	UP	0.001223	2.92E-06	40.96574	1.318309	2.493736	M199T19	
4583 13.77243	13.74583	13.75913	537.1263	537.1252	537.1257	UP	0.003885	1.16E-05	31.72212	0.830853	1.778737	M537T14_:	
0732 11.2524	11.20732	11.21367	325.0951	325.0922	325.0931	UP	0.003885	1.61E-05	49.07387	0.761455	1.695199	M325T11	\$
9118 16.21943	16.19118	16.20212	144.0465	144.0453	144.0457	UP	0.003885	1.69E-05	33.20396	1.008844	2.012298	M144T16	
5622 12.68867	12.65622	12.66457	357.0837	357.082	357.0822	UP	0.003885	1.92E-05	32.88002	1.375258	2.594144	M357T13_:	
3335 8.15796	8.13335	8.13925	426.0345	426.0321	426.0323	UP	0.003885	2.37E-05	22.7141	2.774306	6.841469	M426T8	í.
0283 13.11525	13.00283	13.05983	347.172	347.1634	347.168	UP	0.003885	2.44E-05	22.19083	0.996997	1.995841	M347T13	.0
9628 14.9625	14.89628	14.92045	591.1397	591.135	591.1369	UP	0.003885	2.55E-05	31.66855	1.530331	2.88852	M591T15_3	1
7417 16.34668	16.27417	16.32718	629.7876	629.7792	629.784	UP	0.004174	3E-05	23.19857	1.201655	2.300034	M630T16	2
7012 12.3334	12.27012	12.30179	438.1714	438.1709	438.1711	UP	0.004174	3.44E-05	24.90868	0.685535	1.608298	M438T12	3
2117 8.157967	8.112117	8.13335	425.0457	425.0435	425.045	UP	0.004174	3.77E-05	20.21984	2.132189	4.383821	M425T8	4
1367 14.5699	14.51367	14.53876	151.0405	151.0366	151.0399	UP	0.004174	4.47E-05	20.92318	1.047856	2.067456	M151T15	5
8848 15.25067	15.18848	15.21824	506.1145	506.1066	506.1093	UP	0.004174	4.83E-05	20.18947	0.521604	1.435551	M506T15	.6
5903 14.9746	14.95903	14.96682	789.2278	789.2264	789.2271	UP	0.004174	5.06E-05	18.58276	1.0119	2.016565	M789T15	7
5473 16.38143	16.35473	16.35723	315.1436	315.1425	315.143	UP	0.004174	5.14E-05	25.13321	1.861384	3.633561	M315T16	8
5473 16.38143	16.35473	16.35723	640.7759	640.774	640.7743	UP	0.004174	5.26E-05	24.93903	1.618589	3.070745	M641T16	.9
7808 15.51025	15.47808	15.50497	582.2823	582.2752	582.278	UP	0.004174	5.37E-05	18.25259	0.569741	1.484257	M582T16	0
547	16.3547	16.35723 15.50497	640.7759 582.2823	640.774 582.2752 y filters	640.7743 582.278	up up e need	0.004174 0.004174 es – we	5.26E-05 5.37E-05 ,906 lin	24.93903 18.25259 e has 3	1.618589 0.569741 This file	3.070745 1.484257	M641T16_ M582T16_	9

		Cor	ato	nt i	of t	ho	Ev	col	f:L			
		COI	ite			lie	EX	LEI	1110	2		
A	В		E	E	G	н		J	к	L	м	N
	name	fold log2fold	tstat	pvalue	qvalue	updown	mzmed	mzmin	mzmax	rtmed	rtmin	rtmax
1	M500T18_	3.177186 -1.66775	-69.9353	4.25E-07	0.000591	DOWN	499.7199	499.7144	499.721	17.9395	17.8955	17.94383
2	M251T15	2.538102 1.34375	57.295	7.07E-07	0.000591	UP	251.0044	251.0023	251.0067	14.64618	14.62393	14.66083
3	M417T18	2.457688 1.297302	55.09394	1.178-06	0.000651	UP	417.2121	417.2091	417.2133	17.85967	17.82967	17.8865
	M199T19	2.493736 1.318309	40.96574	2.928-06	0.001223	UP	199.1334	199.1321	199.1345	18.99725	18.97583	19.02717
5	M537T14_	1.778737 0.830853	31.72212	1.16E-05	0.003885	UP	537,1257	537.1252	537.1263	13.75913	13.74583	13.77243
5	M325T11	1.695199 0.761455	49.07387	1.618-05	0.003885	UP	325:0931	325.0922	325.0951	11.21367	11.20732	11.25245
,	M144T16	2.012298 1.008844	33.20396	1.698-05	0.003885	UP	144.0457	144.0453	144.0465	16.20212	16.19118	16.21943
3	M357T13_	2.594144 1.375258	32.88002	1.928-05	0.003885	UP	357.0822	357.082	357.0837	12.66457	12.65622	12.68867
9	M426T8	6.841469 2.774306	22.7141	2.37E-05	0.003885	UP	426.0323	426.0321	426.0345	8.13925	8.13335	8.157967
0	M347T13	1.995841 0.996997	22.19083	2.448-05	0.003885	UP	347.168	347.1634	347.172	13.05983	13.00283	13.11525
1	M591T15_	2.88852 1.530331	31.66855	2.558-05	0.003885	UP	591.1369	591.135	591.1397	14.92045	14.89628	14.96255
2	M630T16	2.300034 1.201655	23.19857	35-05	0.004174	UP	629.784	629.7792	629.7876	16.32718	16.27417	16.34668
.3	M438T12_	1.608298 0.685535	24.90868	3.448-05	0.004174	UP	438.1711	438.1709	438.1714	12.30179	12.27012	12.33347
.4	M425T8	4.383821 2.132189	20.21984	3.778-05	0.004174	UP	425.045	425.0435	425.0457	8.13335	8.112117	8.157967
5	M151T15	2.067456 1.047856	20.92318	4.478-05	0.004174	UP	151.0399	151.0366	151.0405	14.53876	14.51367	14.5699
6	M506T15	1.435551 0.521604	20.18947	4.838-05	0.004174	UP	506.1093	506.1066	506.1145	15.21824	15.18848	15.25067
7	M789T15	2.016565 1.0119	18.58276	5.06E-05	0.004174	UP	789.2271	789.2264	789.2278	14.96682	14.95903	14.9746
8	M315T16	3.633561 1.861384	25.13321	5.148-05	0.004174	UP	315.143	315.1425	315.1436	16.35723	16.35473	16.38143
.9	M641T16_	3.070745 1.618589	24.93903	5.268-05	0.004174	UP	640.7743	640.774	640.7759	16.35723	16.35473	16.38143
	M582T16	1 484257 0 569741	18,25259	5.378-05	0.004174	UP	582.278	582.2752	582.2823	15,50497	15.47808	15.51025

Make a copy of the sheet onto new sheet and sort the data by retention time

	name	fold	log2fold	tstat	pvalue	qvalue	updown	mzmed	mzmin	mzmax	rtmed	rtmin	rtmax
1208	M209T3	1.369143	0.453273	2.709012	0.055919	0.077433	UP	208.9602	208.9598	208.9611	3.28215	3.265233	3.3416
378	M323T3	1.434411	0.520459	5.353103	0.006801	0.030027	UP	322.938	322.9359	322.9407	3.32005	3.295083	3.361817
549	M271T3	1.186928	0.247232	5.44988	0.01248	0.038025	UP	270.9417	270.9411	270.9425	3.32005	3.295083	3.361817
895	M387T3	1.394198	0.479436	4.649027	0.031911	0.059621	UP	386.9358	386.9344	386.9368	3.32005	3.295083	3.361817
1689	M272T3	1.088879	0.122844	2.524051	0.111581	0.110419	UP	271.941	271.9398	271.9434	3.326167	3.29085	3.361817
892	M325T3	1.375868	0.460342	3.79855	0.031801	0.059554	UP	324.9303	324.929	324.9401	3.32705	3.30445	3.361817
1378	M391T3	1.312616	0.392445	3.507716	0.071514	0.086812	UP	390.9101	390.9064	390.9131	3.32705	3.30445	3.367883
1623	M291T3	1.256324	-0.32921	-2.50694	0.102207	0.105294	DOWN	290.9445	290.9436	290.9464	3.327583	3.295083	3.361817
749	M324T3	1.275929	0.351548	3.759227	0.022331	0.049864	UP	323.9378	323.9374	323.9399	3.331108	3.298017	3.361817
2099	M154T3	1.037093	0.052546	1.655429	0.189385	0.150928	UP	154.0059	154.0023	154.0117	3.331492	3.30095	3.361817
1845	M387T5	1.154483	0.207247	2.022386	0.135817	0.123138	UP	387.114	387.113	387.1145	4.978417	4.97	4.99685
2204	M388T5	1.139738	0.188702	1.768345	0.215874	0.163842	UP	388.1168	388.115	388.1176	4.978417	4.970667	4.99615
1315	M404T5	1.345221	-0.42784	-2.9703	0.065723	0.083602	DOWN	404.1036	404.1014	404.1047	4.983425	4.945983	5.010417
1128	M564T5	1.522219	0.606175	3.224519	0.049554	0.073486	UP	564.0012	563.9964	564.0092	4.984925	4.917883	5.0261
2862	M772T5_2	1.106141	-0.14554	-0.84381	0.44698	0.26116	DOWN	772.2342	772.227	772.2367	4.992317	4.97	5.037
3327	M643T5_1	1.122221	-0.16636	-0.46213	0.67351	0.338631	DOWN	642.6763	642.6715	642.6794	4.992317	4.930767	4.99685
	M419T5	1.160736	-0.21504	-3.76575	0.042847	0.067616	DOWN	419.1222	419.1178	419.1251	4.998867	4.97	5.037
1060		1 000013	0.01423	0.343979	0.752961	0.362038	UP	418.1259	418.1251	418.1274	4.999242	4.99615	5.037
1060 3479	M418T5	1.009913					1.100	E24 0040	F33 0053	E24 0074			
1060 3479 805	M418T5 M534T5	2.270077	1.182742	4.124107	0.02608	0.054177	UP	554.0049	533.9957	554.0074	4.999617	4.99685	5.09565
1060 3479 805 2042	M418T5 M534T5 M768T5	2.270077	1.182742	4.124107 -1.66652	0.02608	0.054177	DOWN	768.2396	768.2371	768.241	4.999617	4.99685	5.09565

Delete all these records

Keep metabolites eluting between 5.00 and 25.00 minutes

reas o	f align	ied me	etabol	ites by	y samp
negmode nr1	negmode nr2	negmode nr3	negmode ir1	negmode ir2	negmode ir3
9846	9677	9931	3168	3131	2971
28534	27967	29683	71934	72858	73952
6340	6069	6014	15216	15225	14838
18534	19605	20066	49283	47408	48456
17847	16952	16751	31039	30484	30171
23162	22952	22637	38605	38521	39420
26142	25163	24680	52038	51045	49821
12999	12148	11915	31502	31596	33047
893	1152	1618	8147	8816	8098
10415	11219	10089	20918	20640	21755
26263	26389	23874	74889	71120	75040
3051	3046	3467	7160	7542	7298
15492	16557	16286	26297	25938	25503
3088	2348	3495	13268	13551	12332
7302	8259	8242	16460	16811	15942
23595	22994	24105	33963	34434	33088
10301	9069	9498	20043	18719	19453
6312	6126	7336	24880	22887	24081
3677	3235	2891	10144	10218	9742
13805	14693	14417	21725	20777	21197
1	non-irradiate	d diet	i	rradiated die	t

Now order them according to peak areas

- The goal here is to remove noisy peaks that contribute little to the overall separation of groups
 - It's a good idea to inspect the data with mzmine or xcms to see where the peaks become ragged
 - It's important to write down where the cutoff is for a given analysis
 - If there are >2,000 features left, then I artifically set a 2,000 features limit
 - Why? Metaboanalyst restricts the number of features it uses, but there are other stats programs that use bigger matrices

	Cr	eatir	ng .cs	v files for each sample
			•	
1	mzmed	rtmed	negmode_nr1	
2	499.71989	17.9395	9846	 Copy the median <i>m/z</i> and median Rt
3	251.004448	14.646175	28534	values into a new Excel file. Then copy
4	417.212131	17.8596667	6340	the column of ences from the first
5	199.133402	18.99725	18534	the column of areas from the first
6	537.125737	13.7591333	17847	sample in Group 1. Save as an Excel
7	325.093116	11.2136667	23162	
8	144.045677	16.2021167	26142	.CSV file.
9	357.082227	12.6645667	12999	 Note that the file name must not have
10	426.03226	8.13925	893	spaces – use an underscore instead of a
11	347.167955	13.059825	10415	spaces use an underscore instead of a
12	591.136922	14.92045	26263	space.
13	629.783983	16.3271833	3051	 Leave the file open and replace the
14	438.171148	12.3017917	15492	
15	425.045022	8.13335	3088	yellow column with the areas from the
16	151.039947	14.5387583	7302	next Group 1 sample. Save as a second
17	506.109327	15.2182417	23595	
18	789.227085	14.9668167	10301	.CSV THE.
19	315.142993	16.3572333	6312	Continue until all Group 1 and Group 2
20	640.774334	16.3572333	3677	
21	582.278039	15.5049667	13805	samples have a corresponding .csv file.

ON DMA	MetaboAnalyst 3.0 - a comprehensive tool suite for metabolomic data analysis								
Home	Welcome click here to start								
Overview	News & Updates								
Data Formats	 We are testing our mirror site (mirror.metaboanalyst.ca) on Google Cloud. Traffics will be distributed between the two websites. Let us know if you experience any issue. 								
FAQs	 Several feature improvements and bug fixes based on user feedback (10/16/2015); NEW. 								
Tutorials	Added support for logistic regression in ROC Tester (08/12/2015); ROI Added support for computing compound ratios in biomarker analysis (08/03/2015); ROI								
Resources	 Minor bug tixes and teature enhancements (data IO, PLS-DA, enrichment analysis) to deal with special cases in user inputs (07/20/2015): 								
Update History	Updated Multivariate Biomarker Analysis module with flexible interface and improved capacity for computing on large								
User Stats	datasets (06/05/2015);								
0001 01010	MetaboAnalyst 3.0 paper is now available on the 2015 NAR web server issue								
Contact	Read more								
About	Please Cite:								
	Xia, J., Sinelnikov, I., Han, B., and Wishart, D.S. (2015) <u>MetaboAnalyst 3.0 - making metabolomics more meaningful</u> . Nucl. Acids Res. (DOI: 10.1093/nar/gkv380).								
🍯 тміс	Xia, J., Mandal, R., Sinelnikov, I., Broadhurst, D., and Wishart, D.S. (2012) <u>MetaboAnalyst 2.0 - a comprehensive server for metabolomic data analysis</u> . Nucl. Acids Res. 40, W127-W133.								
hmp	Xia, J., Psychogios, N., Young, N. and Wishart, D.S. (2009) <u>MetaboAnalyst: a web server for metabolomic data analysis and interpretation</u> . Nucl. Acids Res. 37, W652-660.								

b-delimited	text (.txt) or comma-separated values (.csv) file:	
Data Type:	Concentrations Spectral bins Peak intensity table	
Format:	Samples in rows (unpaired)	Submit
Data File:	Choose File No file chosen	
pped Files (zip) :	
Data Type:	NMR peak list MS peak list	
Data File:	Choose File Diet_negmode.zip	Submit
Pair File:	Choose File No file chosen	

H400 14440	MetaboAnalyst 3.0 - a comprehensive tool suite for metabolomic data analysis
借	Processing MS peak list data :
Upload	Peaks need to be matched across samples in order to be compared. For two-column format (mass and intensities), peaks are grouped by
* Processing	their m/z values. For three column data (mass, retention time, and intensities), the program will further group peaks based on their retention
Pre-process	time. Users need to supply tolerance values in order to proceed. Here are some suggested values: mass tolerance - 0.25 (m/z); retention
Data check	time - 30 (seconds) for LC-MS peak, and 5 (seconds) for GC-MS peaks. Please note, If a sample has more than one peak in a group, they
Missing value	will be replaced by their sum; some groups will be excluded if none of the classes has at least half its samples represented. Finally, the
Data filter	program create a peak intensity table in which each sample occupies a row and each column represents a peak group identified by the
Data editor	median values of its position (m/z and/or retention time).
Image options	
Normalization	Mass tolerance (m/z): 0.025
- Statistics	Retention time tolerance: 30.0
Evit	
	reset these to 0.001 and 0.01, respectively

Data processing information:	
Checking data contentpassed	
The uploaded files are peak lists and intensities data.	
A total of 6 samples were found.	
These samples contain a total of 11988 peaks.	
with an average of 1998 peaks per sample	
2 groups were detected in samples.	
Samples are not paired.	
Only English letters, numbers, underscore, hyphen and forward slash (/) are allowed.	
Other special characters or punctuations (if any) will be stripped off.	
All data values are numeric.	
A total of 0 (0%) missing values were detected.	
By default, these values will be replaced by a small value.	
Click Skip button if you accept the default practice	
Or click Missing value imputation to use other methods	
Missing value estimation Skip	

Non-informative variables can be characterized in two groups: variables of very small values - these variables can be detected using mean or median; variables that are near-constant throughout the experiment conditions - these variables can be detected using standard deviation (SD); or the robust estimate such as interquantile range (IQR). The relative standard deviation(RSD = SD/mean) is another useful variance measure independent of the mean. The following empirical rules are applied during data filtering:

- Less than 250 variables: 5% will be filtered;
- Between 250 500 variables: 10% will be filtered;
- Between 500 1000 variables: 25% will be filtered;
- Over 1000 variables: 40% will be filtered;

Please note, in order to reduce the computational burden to the server, the **None** option is only for less than 2000 features. Over that, if you choose None, the IQR filter will still be applied. In addition, the maximum allowed number of variables is 5000. If over 5000 variables were left after filtering, only the top 5000 will be used in the subsequent analysis.

Interquantile range (IQR)

Standard deviation (SD)

- Median absolute deviation (MAD)
- Relative standard deviation (RSD = SD/mean)
- Non-parametric relative standard deviation (MAD/median)
- Mean intensity value
- Median intensity value
- None (less than 2000 features)

Sample normalization	
Sample specific normalization (i.e. dry weight, volume) Normalization by sum	Click here to specify
Normalization by median	
Specify a reference sample Inegmode_ir1 Create a pooled average sample from group negmode_ir	
Normalization by reference feature 50.12842/14.09	

Data options before stats analysis
Data transformation
None
Log transformation (generalized logarithm transformation or glog)
Cube root transformation (take cube root of data values)
Data scaling
None
Auto scaling (mean-centered and divided by the standard deviation of each variable)
Pareto scaling (mean-centered and divided by the square root of standard deviation of each variable)
Range scaling (mean-centered and divided by the range of each variable)

